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Abstract

This paper proposes to extend recent progress
made in natural language processing with
popular transfer learning models such as
BERT to question answering tasks. Our
approach combines a flavor of BERT, Dis-
tilBERT, with synonym-based question aug-
mentation to detect answers in a given con-
text. Our experiments show that our approach
achieves significant improvements over classi-
cal techniques in Stanford Question Answer-
ing Dataset (SQuAD) 1.1.

1 Introduction

This paper tackles the open-book factual question
answering task using Wikipedia as the knowledge
base. Question answering is a significant pillar of
natural language processing and has gone through
significant research over the last few years. Large
models focused on transfer learning have recently
allowed for improvements across a wide array of
tasks, beating out classical techniques by signifi-
cant margins.

Furthermore, data augmentation techniques for
training regularization have been prevalent in com-
puter vision tasks but were historically more dif-
ficult to apply to text problems. However, the in-
troduction of modern lightweight natural language
augmentation techniques has shown promise.

In this paper, we show how applying develop-
ments introduced by BERT can offer notable per-
formance improvements over previous methods.
Additionally, we introduce question augmentation
through synonym substitution to regularize the
training for robustness.

2 Related Work

Open-book question answering is a common task
in natural language processing. DrQA (Chen et al.,

2017) aimed to address the task through a Retriever-
Reader mechanism, in which a Retriever model
employs a search mechanism based on bi-gram TF-
IDF representations to return relevant documents
from a pool of documents and a Reader model de-
tects answer spans within the chosen context. This
Retriever-Reader framework has become popular,
with further development such as with BERTserini
(Yang et al., 2019) and the Multi-passage BERT
QA model (Wang et al., 2019).

Further motivation for this paper comes from
improvements that have been introduced since the
development of DrQA. In particular, ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2018)
improved upon many state-of-the-art models at
their inceptions and continue to be cornerstones
in present-day language modeling tasks. Our ap-
proach focuses on BERT, which was designed to
provide deep representations that could be fine-
tuned with few output layers while providing strong
performance in various tasks. BERT introduced
a novel masked language modeling which allows
for powerful transferable bi-directional training of
fine-tuned models. Through knowledge distillation,
DistilBERT (Sanh et al., 2019) improved the acces-
sibility of BERT-like performance by reducing the
size of BERT by 40% while maintaining 97% of
the performance. By dramatically reducing the size
of the model, DistilBERT allows for significantly
quicker training with much fewer resources.

Additionally, recent research in text augmenta-
tion techniques (Wei and Zou, 2019) shows po-
tential through several simple text operations: syn-
onym replacement (SR), random insertion (RI), ran-
dom swap (RS), and random deletion (RD). Text
augmentation results suggest that full-data accu-
racy can be attainable with up to a 50% reduction
in data used.



3 Methodology

In the following section, we introduce our ap-
proach, which implements two key changes: (1)
the introduction of a DistilBERT representational
layer to the model architecture and (2) question
augmentation through the use of synonym substitu-
tion.

3.1 Model Architecture

Our approach is similar to that used in the Reader
portion of the approach found in DrQA. However,
we perform a transfer learning process by substitut-
ing the initial embedding layer with the final layer
of a pre-trained DistilBERT model. From there, we
compute aligned question embeddings through a
Context2Query layer (Seo et al., 2016) to retrieve
a weighted sum of the question and context. We
then concatenate these aligned embeddings with
the passage embeddings, which are then fed into
a Bi-LSTM (Cornegruta et al., 2016) passage en-
coder, and the question embeddings are fed into
a separate Bi-LSTM question encoder. We then
compute the attentive sums of the encoded ques-
tions to retrieve representational question vectors.
These encoded passages and question vectors are
then fed into output layers to retrieve probability
distributions for the start and end indices in the
given context. Finally, we perform a search over
the distributions to find the start index with the max-
imum likelihood and find the ending index with the
highest joint probability within a window. The con-
text is then sliced over these indices to predict an
answer.

3.2 Augmentation

In an attempt to regularize and increase the lift of
the training data, we apply synonym replacement
(SR) to a question generation process. We use
nlpaug1, a package for generating synthetic text
data. We apply a probabilistic question augmenta-
tion process to artificially increase the size of our
training data by randomly substituting words for
their synonyms. These synonyms are generated by
WordNet (Miller et al., 1990), a commonly used
lexical database. These generated sentences are ap-
pended to the training set prior to training, and the
model learns from this modified pool of questions.

1https://github.com/makcedward/nlpaug

4 Dataset and Evaluation

4.1 Dataset
We focus on Stanford Question Answering Dataset
(SQuAD) 1.1 (Rajpurkar et al., 2016). SQuAD pro-
vides a large amount of contextual text with related
questions crowdsourced from Wikipedia articles.
SQuAD consists of over 100,000 questions with
the answers labeled in corresponding articles and
provides for a rich source of factual information
commonly used to train question answering mod-
els. Human performance on the dataset achieves
an F1 score of 86.8%.

4.2 Evaluation Metrics
We use two primary metrics to evaluate the perfor-
mance of our approach: F1 score and exact match.

F1 score. The F1 score is a measurement of accu-
racy computed as the harmonic mean of precision
and recall. Specifically, we tokenize the predicted
answers and ground truth labels and compute the
F1 score as follows:

F1 score = 2× precision · recall
precision + recall

. (1)

The F1 scores for all predictions are then averaged
to retrieve the final F1 score (macro-averaged).

Exact Match. Exact match measures the propor-
tion of predicted answers that match exactly with
their corresponding labeled answers.

4.3 Training
To train the model, we first tokenize the
questions, both augmented and unaugmented,
and answers with the BERT tokenization
process. Specifically, we use the Distil-
BertTokenizer and DistilBERT base model
(distilbert-base-uncased2) provided by
Hugging Face through the tokenizers3 and
transformers4 packages. We need to use the
corresponding tokenization process (equivalent
to the standard BERT tokenization) to leverage
the pre-trained DistilBERT model. The hidden
dimension size of the internal Bi-LSTM layers is
set to 256, and we use a batch size of 192. The
model is trained on a Tesla V100 GPU for 10

2https://huggingface.co/
distilbert-base-uncased

3https://github.com/huggingface/
tokenizers

4https://github.com/huggingface/
transformers

https://github.com/makcedward/nlpaug
https://huggingface.co/distilbert-base-uncased
https://huggingface.co/distilbert-base-uncased
https://github.com/huggingface/tokenizers
https://github.com/huggingface/tokenizers
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers


epochs with early stopping for approximately 70
minutes.

5 Analysis

To address questions from Section 1, we conduct a
series of experiments to validate our claims and to
show some interesting properties of our approach.
Section 5.1 explores the effectiveness of synonym
augmentation in improving the robustness of vari-
ous models. Section 5.2 compares the model per-
formance between the baseline models and our
approach. Finally, Section 5.3 provides an abla-
tion study to measure the individual contribution
of components (e.g., Synonym Augmentation) to
the model performance.

5.1 Synonym Augmentation

To understand the impact of synonym augmenta-
tion on the robustness of the model performance,
we employ a hyper-parameter search on the proba-
bility of augmenting the question text ranging from
0.1 to 0.5. Table 1 compares these probabilities on
the development set of the SQuAD dataset. Surpris-
ingly, we observe a marginal performance degrada-
tion as we increase the augmentation probability.
The model suffers about -2.47% and -2.03% drop
in EM and F1, going from a probability of 0.1 to
0.5. One possible reason for this regression is that
the synonym replacement augments the grammati-
cal structure of the question. It might confuse the
question embedding so that the wrong context is
being served to the downstream layers. Another
explanation from the research community suggests
a similar pattern when applied to large training sets,
possibly due to the strong generalization strength
already provided by substantial unaugmented train-
ing sets (Wei and Zou, 2019).

5.2 Baseline Comparison

To measure the effectiveness of our approaches, we
compare our model with two baselines with the
same model architecture, except the embedding
layer is either randomly initialized or GloVe-based
(Pennington et al., 2014). To simplify the compar-
ison, we choose the model with a synonym aug-
mentation probability of 0.1 to compare with the
baselines since it has the best performance shown
in Table 1. Table 2 presents the model performance
on the development set of the SQuAD dataset. With
the novelty of masked language models, Distil-
BERT as the embedding yields significant improve-

ment in both EM and F1 (+27.79% and +19.44%
respectively compared to GloVe embedding).

5.3 Ablation Studies

We run a series of ablation experiments to better
understand each component’s performance contri-
bution (e.g., DistilBERT). Results are shown in
table 3 and discussed in detail next.

Tokenization: Since leveraging the DistilBERT
model provided by Hugging Face requires us to
use their tokenization, we try to apply the same
tokenization to models with randomly initialized
embedding to observe its contribution to the model
performance. Unfortunately, the model with GloVe
embedding had some compatibility issues with
Hugging Face’s tokenization, and we were unable
to obtain its results. However, the comparison be-
tween the randomly initialized embedding indicates
that the tokenization does not significantly lift EM
and F1.

Synonym Augmentation: Similar to findings
shown in Section 5.1, we have also observed a
minor performance drop across different combina-
tions of embedding and tokenization techniques.
One interesting observation is that the DistilBERT-
based model without the synonym augmentation
performs the best out of all models in this ablation
study.

Embedding: Given the effectiveness of pre-
trained transformers, we have observed the most
performance boost (+30.8% in EM and +21.8% in
F1 compared to GloVe-based model)5 by using Dis-
tilBERT as the embedding compared to other ap-
proaches such as random initialization and GloVe.

6 Conclusion

We show that applying pre-trained language mod-
els such as DistilBERT can provide significant
performance gains to previous approaches. Ad-
ditionally, we explore the potential of text aug-
mentation through synonym replacement on ques-
tions, although resulting improvement is yet to be
shown. Further exploration on the topic could ex-
amine more complex strategies, possibly utilizing
language models such as GPT-2 (Radford et al.,
2019) for more advanced grammatical substitutions.
We expect a combination of transfer learning and
strong text augmentation has further potential to
significantly improve upon classical techniques.

5We referencing the result from DistilBERT as embedding
without synonym augmentation



Embedding Tokenization Synonym Aug. Prob. Exact Match (EM) F1
DistilBERT Hugging Face 0.1 61.43 ± 0.21 72.30 ± 0.18

0.2 61.14 ± 0.17 72.14 ± 0.18
0.3 60.18 ± 0.56 71.29 ± 0.40
0.4 59.46 ± 0.27 70.67 ± 0.24
0.5 59.91 ± 0.04 70.83 ± 0.04

Table 1: Hyper-parameter search with various augmentation probabilities on the development set of the SQuAD
dataset. Evaluation metrics are averaged with 3 runs on different seeds.

Embedding Tokenization Synonym Aug. Exact Match (EM) F1
Random Weights MRQA 37.70 ± 0.29 50.99 ± 0.23
GloVe (6B/300D) MRQA 48.07 ± 0.36 60.53 ± 0.35
DistilBERT Hugging Face X 61.43 ± 0.21 72.30 ± 0.18

Table 2: Comparison between baseline models and proposed model on the development set of the SQuAD dataset.
Evaluation metrics are averaged with 3 runs on different seeds. The synonym augmentation probability is 0.1.

Embedding Tokenization Synonym Aug. Exact Match (EM) F1
Random Weights MRQA 37.70 ± 0.29 50.99 ± 0.23
Random Weights MRQA X 37.05 ± 0.29 50.45 ± 0.25
Random Weights Hugging Face 36.82 ± 0.36 50.60 ± 0.33
Random Weights Hugging Face X 36.31 ± 0.10 49.77 ± 0.19
GloVe (6B/300D) MRQA 48.07 ± 0.36 60.53 ± 0.35
GloVe (6B/300D) MRQA X 47.24 ± 0.30 59.69 ± 0.30
DistilBERT Hugging Face 62.88 ± 0.04 73.77 ± 0.30
DistilBERT Hugging Face X 61.43 ± 0.21 72.30 ± 0.18

Table 3: Ablation study on the influence of various components (e.g., DistilBERT, synonym augmentation) on
the performances of the development set of the SQuAD dataset. Evaluation metrics are averaged with 3 runs on
different seeds. The synonym augmentation probability is 0.1.
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